STATUS OF GROUND-WATER RESOURCES AT U.S. NAVY SUPPORT FACILITY, DIEGO GARCIA: SUMMARY OF HYDROLOGIC AND CLIMATIC DATA, JANUARY 1995 THROUGH JUNE 1997 By Jill D. Torikai U.S. GEOLOGICAL SURVEY Open-File Report 97-418 Prepared in cooperation with the U.S. DEPARTMENT OF THE NAVY NAVY SUPPORT FACILITY, DIEGO GARCIA ARCIA Honolulu, Hawaii 1997 ## U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Gordon P. Eaton, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government For sale by: U.S. Geological Survey Branch of Information Services Box 25286 Denver, CO 80225-0286 For additional information write to: District Chief U.S. Geological Survey 677 Ala Moana Blvd., Suite 415 Honolulu, HI 96813 #### CONTENTS | | Page | |-------------------------------------------------------------------------------------------------------------|------| | Executive Summary | 1 | | Introduction | 2 | | Organization of Report | 2 | | Acknowledgments | 3 | | Rainfall | 5 | | Ground-Water Withdrawal | 7 | | Chloride Concentration of Pumped Ground Water | 9 | | Chloride Concentration of Ground Water in Monitoring Wells | 11 | | Fuel-Diversion Program at Air Operations | 14 | | Hydrologic-Data Section A. Maps of Production and Monitoring Wells at | 4.0 | | Cantonment and Air Operations | 18 | | Hydrologic-Data Section B. Graphs of Monthly Mean Ground-Water Withdrawal, January 1995 through June 1997 | 23 | | | | | Hydrologic-Data Section C. Graphs of Chloride Concentration of Pumped Water, January 1995 through June 1997 | 34 | | References Cited | 43 | #### **FIGURES** | 1. Map showing areas of ground-water production, Diego Garcia | Page 4 | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------| | 2. Graphs of monthly rainfall and monthly departure from mean monthly rainfall (for 1951-96) at Air Operations, Diego Garcia, January 1995 through June 1997 | 6 | | 3. Graphs of monthly mean ground-water withdrawal islandwide and in the ground-water production areas, Diego Garcia, January 1995 through June 1997 | 8 | | 4. Graphs of chloride concentration of pumped water in the ground-water production areas, Diego Garcia, January 1995 through June 1997 | 10 | | 5. Graphs of chloride concentration of ground water (sampled at monthly intervals) in monitoring wells at site AW16 at Cantonment, Diego Garcia, January 1995 through June 1997 | 12 | | 6. Graphs of chloride concentration of ground water (sampled at monthly intervals) in monitoring wells at site BW09 at Air Operations, Diego Garcia, January 1995 through June 1997 | 13 | | 7. Graphs of monthly mean ground-water withdrawal and injection at wells AO-10 through AO-15 at Air Operations, Diego Garcia, January 1995 through June 1997 | 16 | | TABLE | Page | | 1. Target and actual withdrawal and injection rates for fuel-diversion program, Diego Garcia, April through June 1997 | 15 | #### **CONVERSION FACTORS AND ABBREVIATION** | Multiply | Ву | To obtain | |----------------------------------|---------|------------------------| | foot (ft) | 0.3048 | meter | | gallon (gal) | 3.785 | liter | | gallon per day (gal/d) | 3.785 | liter per day | | million gallons per day (Mgal/d) | 0.04381 | cubic meter per second | | inch per year (in/yr) | 25.4 | millimeter per year | # **Abbreviation used in water-quality descriptions** mg/L = milligrams per liter #### STATUS OF GROUND-WATER RESOURCES AT U.S. NAVY SUPPORT FACILITY, DIEGO GARCIA: SUMMARY OF HYDROLOGIC AND CLIMATIC DATA, JANUARY 1995 THROUGH JUNE 1997 #### **EXECUTIVE SUMMARY** This report describes the status of ground-water resources at U.S. Navy Support Facility, Diego Garcia. Data presented are from January 1995 through June 1997, with a focus on data from April through June 1997 (second quarter of 1997). A complete database of ground-water withdrawals and chloride-concentration records since 1985 is maintained by the U.S. Geological Survey from records provided by the U.S. Navy. - 1. <u>RAINFALL</u>--Total rainfall for the period April through June 1997 was 25.81 inches, which is 30 percent more than the mean rainfall of 19.79 inches for the period April through June. The 3 months of the quarter are part of the annual dry season. - 2. <u>GROUND-WATER WITHDRAWAL</u>--Islandwide ground-water withdrawal during April through June 1997 averaged 924,100 gallons per day, which continues an overall trend of decreasing islandwide withdrawals since about April 1996. - 3. <u>CHLORIDE CONCENTRATION OF PUMPED GROUND WATER</u>--At the end of June 1997, the chloride concentrations of water from the elevated tanks at Cantonment and Air Operations were 60 and 95 milligrams per liter, respectively. - 4. <u>CHLORIDE CONCENTRATION OF GROUND WATER IN MONITORING WELLS</u>--The overall chloride concentration of ground water in selected monitoring wells at Cantonment and Air Operations decreased during the second quarter of 1997. - 5. <u>FUEL-DIVERSION PROGRAM AT AIR OPERATIONS</u>—Injection and withdrawal rates at wells AO-10 through AO-12, well AO-14, and well AO-15 were between 10 and 32 percent less than the target withdrawal and injection rates during the second quarter of 1997. The target rates of withdrawal and injection were established to hydraulically divert fuel migration away from water-supply wells. The diversion program is a result of a fuel-pipeline leak discovered at the South Ramp of Air Operations in May 1991. #### STATUS OF GROUND-WATER RESOURCES AT U.S. NAVY SUPPORT FACILITY, DIEGO GARCIA: SUMMARY OF HYDROLOGIC AND CLIMATIC DATA, JANUARY 1995 THROUGH JUNE 1997 By Jill D. Torikai #### INTRODUCTION Diego Garcia Atoll is part of the British Indian Ocean Territory and the site of a U.S. Navy Support Facility. The island's drinking-water supply is derived from ground water, and recharge to the ground-water system is from rainfall. Since 1985, the island's water-supply system has produced about 1 Mgal/d by maintaining low individual pumping rates at the many scattered wells (Torikai, 1995). Ground water is pumped from lens-shaped bodies of freshwater floating on seawater. Chloride concentrations of the water have been kept at acceptable levels for drinking by adjusting individual pumping rates. The water-supply system, which has been in operation since 1978, has 102 active wells in five production areas (fig. 1). Water from the Cantonment and Air Operations areas combined accounts for about 99 percent of islandwide withdrawal. The remainder is pumped for local use at Industrial Site South (I-Site), Transmitter Site (T-Site), and GEODSS Site. Long-term ground-water monitoring has been facilitated by a cooperative agreement between the Navy Support Facility (NAVSUPPFAC) and the U.S. Geological Survey (USGS) since 1984. However, USGS involvement at Diego Garcia began in 1978 with a hydrogeologic investigation for the Naval Facilities Engineering Command, Pacific Division. The study provided estimates of ground-water resource potential, and helped with the subsequent design, layout, and testing of the water-supply wells (D.A. Davis, USGS, written commun. to U.S. Navy, 1979). #### Organization of Report This data summary contains hydrologic and climatic data that describe the status of ground-water resources at Navy Support Facility, Diego Garcia. Data presented are from January 1995 through June 1997. Data of primary relevance to the water supply are: - Rainfall - Volume of ground water withdrawn at production wells - Chloride concentration of pumped ground water - Chloride concentration of ground water sampled from monitoring wells - Volume of ground water injected at Air Operations The following narrative highlights trends in the data for April through June 1997, and makes comparisons with historical data. Ground-water withdrawal and chloride concentrations of water from individual wells are presented in the "Hydrologic-Data Section." The data section contains the following: - A. Maps of production and monitoring wells at Cantonment and Air Operations - B. Graphs of monthly mean ground-water withdrawal, January 1995 through June 1997 - C. Graphs of chloride concentration of pumped water, January 1995 through June 1997 This report is part of a series of USGS reports, "Status of ground-water resources at U.S. Navy Support Facility, Diego Garcia: summary of hydrologic and climatic data." The first report in this series began with data for the period January 1985 through September 1993 (Torikai, 1995). Successive reports have been done on a quarterly basis. #### **Acknowledgments** Ground-water withdrawal and chloride-concentration data were provided by the NAVSUPPFAC, Public Works Department. Rainfall data were provided by the Naval Pacific Meteorology and Oceanography Detachment at Diego Garcia (NAVPACMETOCDET). Logistical support from the staff of the Public Works Department is greatly appreciated. Figure 1. Areas of ground-water production, Diego Garcia. #### **RAINFALL** **Background**.--Rainfall data are available since 1951, and all mean rainfall values in this report are calculated for the base period 1951-96. Monthly rainfall are available in published records for the following periods: 1951-60 (U.S. Department of Commerce, 1968), 1961-70 (U.S. Department of Commerce, 1979), 1971 (U.S. Navy, 1978), and 1972-93 (U.S. Department of Commerce, 1995). Rainfall data for the period January 1994 through June 1997 are from the Naval Pacific Meteorology and Oceanography Detachment at Diego Garcia (NAVPACMETOCDET). The mean annual rainfall at Diego Garcia is about 104 in/yr. Rainfall varies considerably from month to month and from year to year. A wet season occurs from about September through February, and a dry season from about March through August (Hunt, in press), although March through May can be considered a transitional period with characteristics of either the wet or dry season (Naval Pacific Meteorology and Oceanography Detachment at Diego Garcia, written commun., 1997). Recent trends.--Total rainfall for the period April through June 1997 (second quarter of 1997) was 25.81 inches, which is 30 percent more than the mean rainfall of 19.79 inches for the period April through June. Figure 2 shows recorded rainfall amounts and rainfall departures from mean monthly rainfall values that were averaged for the base period 1951-96. The period April through June is part of the annual dry season. Periods of below average rainfall can be inferred from the graph when the departure from the mean monthly rainfall is less than zero. Since January 1997, there were 3 months with negative rainfall departures, and 3 months with positive departures. Figure 2. Monthly rainfall and monthly departure from mean monthly rainfall (for 1951-96) at Air Operations, Diego Garcia, January 1995 through June 1997. Data are from the Naval Pacific Meteorology and Oceanography Detachment Diego Garcia (NAVPACMETOCDET). #### **GROUND-WATER WITHDRAWAL** Background.--Withdrawal is measured by flow meters at all production wells and storage tanks in the water system. The data for withdrawal are provided by the U.S. Navy. Data were collected daily through November 1996, but since December 2, 1996, data are collected every Monday, Wednesday, Friday, and Saturday, and thus represent a total of 1 or 2 days of ground-water withdrawal. There are 102 production wells in 5 ground-water production areas. The primary production areas are in the Cantonment area (80 wells; fig. A1) and the Air Operations area (18 wells; fig. A2). The wells in the Cantonment area are further separated into sub-groups, and the measured ground-water withdrawals are presented by sub-group in this report. About 80 percent of islandwide withdrawal is from Cantonment, and about 19 percent is from Air Operations, with the remaining 1 percent from the other three ground-water production areas. Ground-water withdrawal from the Cantonment area increased in 1991 because of decreased withdrawal at Air Operations (Torikai, 1995). From May 1991 through April 1992, 10 wells at Air Operations were temporarily shut down because of an underground fuel-pipeline leak near those wells. Pumping resumed at four wells in May 1992, but six Air Operations wells still do not contribute to the water supply because of their proximity to the fuel leak. The lost pumping capacity is about 15 percent of the islandwide withdrawal, and is being offset by increased withdrawal at Cantonment. **Recent trends.**—Figure 3 shows time-series graphs of monthly mean withdrawal islandwide and in each ground-water production area from January 1995 through June 1997. If the last day of a month is not a Monday, Wednesday, Friday, or Saturday, then the withdrawal is included in the withdrawal of the next month. Thus, some monthly mean withdrawal data may include the withdrawal data for the last day of the previous month. Islandwide withdrawal was 924,100 gal/d during the period April through June 1997 (second quarter of 1997), which is 12 percent less than the 1,048,000 gal/d withdrawal during the period April through June 1996 (second quarter of 1996). This reduction in ground-water withdrawal continues an overall decrease in islandwide withdrawals since about April 1996, although withdrawals from individual wells both increased and decreased (figs. B1, B2, B3, B4, B5, and B6). Withdrawal for the second quarter of 1997 in the Cantonment area was 760,500 gal/d or 82 percent of islandwide withdrawal; withdrawal in the Air Operations area was 155,400 gal/d or 17 percent of islandwide withdrawal. The remaining 1 percent of islandwide withdrawal was from the combined withdrawals at Industrial Site South (I-Site), Transmitter Site (T-Site), and GEODSS Site. Figure 3. Monthly mean ground-water withdrawal islandwide and in the ground-water production areas, Diego Garcia, January 1995 through June 1997. Data are collected every Monday, Wednesday, Friday, and Saturday. If the last day of a month is not a scheduled data-collection day, then the withdrawal is included in the withdrawal of the next month. #### CHLORIDE CONCENTRATION OF PUMPED GROUND WATER **Background.**—Chloride concentration is an indication of the relative saltiness of the water. Freshwater is defined in this report as water with a maximum chloride concentration of 250 mg/L. For comparison, the chloride concentration of seawater at Diego Garcia is about 19,400 mg/L (G.W. Tribble, USGS, written commun., 1997). For aesthetic qualities of drinking water, the U.S. Environmental Protection Agency (1991) recommends a maximum chloride concentration of 250 mg/L. Chloride-concentration data are provided by the U.S. Navy from analyses done at the onisland laboratory. Chloride concentrations were analyzed daily through November 1996 from water samples collected from the elevated tanks at Cantonment and Air Operations, and from the tap at Industrial Site South (I-Site), Transmitter Site (T-Site), and GEODSS Site. These samples are representative of each of the five ground-water production areas (fig. 1). Since December 2, 1996, chloride concentrations from the five production areas are analyzed for water samples collected every Monday, Wednesday, Friday, and Saturday. Although daily chloride concentration data were available from the five production areas until November 1996, this report only uses the chloride concentrations from every seventh day that were extracted from the daily record through November 1996. From December 2, 1996, this report only uses the chloride concentrations from water samples collected every Saturday from the representative sites at all five production areas. Chloride concentrations of water collected from individual wells islandwide have always been determined only once a week. Recent trends.--At the end of June 1997, the chloride concentrations of water from the elevated tanks at Cantonment and Air Operations were 60 and 95 mg/L, respectively. These concentrations are well below the recommended 250 mg/L chloride concentration. The Cantonment and Air Operations areas combined account for about 99 percent of all pumped water. The chloride concentration of water in the Cantonment and Air Operations areas reached maximum concentration in August 1996 with concentrations of 80 and 190 mg/L, respectively, for the period January 1995 through June 1997 (fig. 4). Peak concentrations for I-Site, T-Site, and GEODSS Site were recorded in January 1996, December 1995, and November 1996, respectively. The overall upward trend in chloride concentration at all five ground-water production areas started about April 1995. During January and February 1997, chloride concentration of water from the five production areas decreased and coincided with the 20.87 inches of rainfall in January 1997. Chloride concentrations of water at Cantonment, Industrial Site South, and GEODSS Site remained fairly steady during the period April through June 1997 (second quarter of 1997), whereas chloride concentration increased at Transmitter Site. The chloride concentration of water from Air Operations ranged between 26 and 98 mg/L during the same period. No significant changes in chloride concentration of water from modules and individual wells at Cantonment and Air Operations were recorded during the second quarter of 1997 (figs. C1, C2, C3, and C4). Figure 4. Chloride concentration of pumped water in the ground-water production areas, Diego Garcia, January 1995 through June 1997. Data shown for the period January 1995 through November 1996 are values from every seventh day extracted from the daily record. Data shown for the period December 1996 through March 1997 are values from every Saturday extracted from the data-collection schedule of every Monday, Wednesday, Friday, and Saturday. Rainfall data are shown for comparison. #### CHLORIDE CONCENTRATION OF GROUND WATER IN MONITORING WELLS Background.--Monitoring-well sites comprise one to four vertical wells, with each well having a short screened (open) interval 2 to 5 ft at the bottom of the well. At monitoring sites with more than one well, each well is screened at a different depth, usually between 10 and 100 ft below mean sea level. Some deeper wells tap the transition zone between freshwater and seawater. Monitoring-well sites are distributed islandwide, with 20 sites at Cantonment (fig. A3) and 8 at Air Operations within the active airfield (fig. A4). Additional monitoring-well sites are located south of the airfield, and at Industrial Site South and Transmitter Site. The chloride concentration of ground water is analyzed monthly from water samples collected at 35 monitoring-well sites. These data are provided by the U.S. Navy. Recent trends.--Monitoring sites AW16 and BW09 (figs. A3, A4) were selected to show trends in ground-water chloride concentration at Cantonment and Air Operations, respectively. Figures 5 and 6 are graphs of chloride concentration at three depths compared with time at the Cantonment and Air Operations sites, respectively, with rainfall data included in the figures for comparison. The overall chloride concentration of water from sites AW16 and BW09 decreased throughout the period April through June 1997 (second quarter of 1997). However, the chloride concentration of water from the 10-ft well at site AW16 fluctuated during the quarter and ranged between 80 and 138 mg/L. Figure 5. Chloride concentration of ground water (sampled at monthly intervals) in monitoring wells at site AW16 at Cantonment, Diego Garcia, January 1995 through June 1997. Rainfall data from figure 2 are shown for comparison. Figure 6. Chloride concentration of ground water (sampled at monthly intervals) in monitoring wells at site BW09 at Air Operations, Diego Garcia, January 1995 through June 1997. Rainfall data from figure 2 are shown for comparison. #### **FUEL-DIVERSION PROGRAM AT AIR OPERATIONS** **Background.**—The normal pattern of ground-water withdrawal at Air Operations has been disrupted since May 1991 by an underground JP-5 fuel-pipeline leak at the South Ramp parking apron (fig. A2). The leak was about 800 ft from several water-supply wells. In August 1991, the USGS suggested a scheme to hydraulically alter the ground-water flow direction in the Air Operations area, and in April 1992, the program to divert fuel away from the production wells was initiated. The fuel-diversion program is a closed recirculation loop of withdrawal and injection. It utilizes six wells (AO-10 through AO-15), and consists of pumping about 150,000 gal/d of water from wells AO-14 and AO-15 and directing this water through the common collection main to the wells nearest the leak (AO-10 through AO-12), where it is injected back into the ground. Well AO-13 has been used only intermittently since the fuel leak was detected in 1991 (Torikai, 1995). An elevated mound in the water table created by the injection water helps to retard the migration of fuel toward the water-supply wells. Subsequent to the leak detection, 10 wells were shut down from May 1991 to April 1992. However, with the inception of the diversion program, only six wells still do not contribute to the water supply. Lost production capacity is about 15 percent of islandwide withdrawal prior to the leak detection. It is expected that the fuel-diversion program will continue until the site is remediated. Injection data for wells AO-10 through AO-12 from May 10, 1993 through June 1997 are collected from water-meter readings. From April 1992 through early May 1993, meter readings of injection were not available, and daily injection at each of the three wells was estimated to be one-third of the total daily withdrawal from wells AO-13 through AO-15 which provided the injection-supply water (Torikai, 1995). Recent trends.--Target withdrawal and injection rates are listed in table 1 for wells AO-10 through AO-15 for the period April through June 1997 (second quarter of 1997). Daily mean withdrawal and injection rates for these wells are also shown. Injection and withdrawal rates at wells AO-10 through AO-12, well AO-14, and well AO-15 were between 10 and 32 percent less than the established target rates during the second quarter of 1997. The daily mean injection was about 118,000 gal/d, while the daily mean withdrawal was about 130,000 gal/d. The total target withdrawal is 150,000 gal/d, and the total target injection is 150,000 gal/d. Monthly mean withdrawal and injection at wells AO-10 through AO-15 are shown in figure 7 for the period January 1995 through June 1997. Monthly mean withdrawal and injection for wells AO-10 through AO-12, well AO-14, and well AO-15 decreased since January 1997, following withdrawal and injection rates that were close to the target rates since the start of the program in April 1992 (Torikai, 1995). Table 1. Target and actual withdrawal and injection rates for fuel-diversion program, Diego Garcia, April through June 1997 [Injection is denoted by negative values; target rate and daily mean rate are in gallons per day.] | Well | Target rate | Daily mean rate | Difference between target rate and daily mean rate (percent) | |-------|-------------|-----------------|--------------------------------------------------------------| | AO-10 | -30,000 | -26,300 | 12 | | AO-11 | -50,000 | -44,100 | 12 | | AO-12 | -70,000 | -47,700 | 32 | | AO-13 | 0 | 0 | 0 | | AO-14 | 70,000 | 57,700 | 18 | | AO-15 | 80,000 | 72,300 | 10 | Figure 7. Monthly mean ground-water withdrawal and injection at wells AO-10 through AO-15 at Air Operations, Diego Garcia, January 1995 through June 1997. Injection is plotted as negative. Data are collected every Monday, Wednesday, Friday, and Saturday. If the last day of a month is not a scheduled data-collection day, then the withdrawal is included in the withdrawal of the next month. #### HYDROLOGIC-DATA SECTION #### TYPES OF DATA INCLUDED - A. Maps of production and monitoring wells at Cantonment and Air Operations - B. Graphs of monthly mean ground-water withdrawal, January 1995 through June 1997 - C. Graphs of chloride concentration of pumped water, January 1995 through June 1997 ## DESCRIPTIONS OF PRINCIPAL PRODUCTION SOURCES AT CANTONMENT AND AIR OPERATIONS AREAS #### Cantonment Area - 1. Modules A, C through L each module is a well field of two to nine vertical wells that are pumped to a common collection/ transfer tank. - 2. Wells H1 through H7 are horizontal wells. - 3. Quad wells are a well field of four vertical wells #### Air Operations Area - 1. Wells AO-2 through AO-5 are vertical wells. - 2. Wells AO-6 through AO-9 are horizontal wells. - 3. Wells AO-10 through AO-15 are horizontal wells. AO-10 through AO-12 are currently receiving injection water from water pumped at wells AO-14 and AO-15 to divert contaminants from a nearby fuel leak; AO-13 is not pumped. No samples are currently collected for chloride-concentration analysis. - 4. AO-16 through AO-19 are horizontal wells. ## **SECTION A** # Maps of production and monitoring wells at Cantonment and Air Operations #### **EXPLANATION** Figure A1. Ground-water production wells at Cantonment, Diego Garcia. Figure A2. Ground-water production wells at Air Operations, Diego Garcia. AW21 MONITORING SITE AND DESIGNATION--Consisting of two or more monitoring wells with short (2- to 5-foot) open intervals of different depths ROAD, PAVED OR UNPAVED Figure A3. Monitoring wells at Cantonment, Diego Garcia. Figure A4. Monitoring wells at Air Operations, Diego Garcia. ## **SECTION B** Graphs of monthly mean ground-water withdrawal, January 1995 through June 1997 Figure B1. Monthly mean ground-water withdrawal at Cantonment, Diego Garcia, January 1995 through June 1997. Data are collected every Monday, Wednesday, Friday, and Saturday. If the last day of a month is not a scheduled data-collection day, then the withdrawal is included in the withdrawal of the next month. Figure B2. Monthly mean ground-water withdrawal at Module A and Modules C through L at Cantonment, Diego Garcia, January 1995 through June 1997. Data are collected every Monday, Wednesday, Friday, and Saturday. If the last day of a month is not a scheduled data-collection day, then the withdrawal is included in the withdrawal of the next month. Figure B2. Monthly mean ground-water withdrawal at Module A and Modules C through L at Cantonment, Diego Garcia, January 1995 through June 1997. Data are collected every Monday, Wednesday, Friday, and Saturday. If the last day of a month is not a scheduled data-collection day, then the withdrawal is included in the withdrawal of the next month--Continued. Figure B3. Monthly mean ground-water withdrawal at Horizontal wells H1 through H7 at Cantonment, Diego Garcia, January 1995 through June 1997. Data are collected every Monday, Wednesday, Friday, and Saturday. If the last day of a month is not a scheduled data-collection day, then the withdrawal is included in the withdrawal of the next month. Figure B3. Monthly mean ground-water withdrawal at Horizontal wells H1 through H7 at Cantonment, Diego Garcia, January 1995 through June 1997. Data are collected every Monday, Wednesday, Friday, and Saturday. If the last day of a month is not a scheduled data-collection day, then the withdrawal is included in the withdrawal of the next month--Continued. Figure B4. Monthly mean ground-water withdrawal at Quad wells Q1, Q2, Q4, and Q6 at Cantonment, Diego Garcia, January 1995 through June 1997. Data are collected every Monday, Wednesday, Friday, and Saturday. If the last day of a month is not a scheduled data-collection day, then the withdrawal is included in the withdrawal of the next month. Figure B5. Monthly mean ground-water withdrawal and injection at Air Operations, Diego Garcia, January 1995 through June 1997. Data are collected every Monday, Wednesday, Friday, and Saturday. If the last day of a month is not a scheduled data-collection day, then the withdrawal is included in the withdrawal of the next month. Injection is plotted as negative. Figure B6. Monthly mean ground-water withdrawal and injection at wells AO-2 through AO-19 at Air Operations, Diego Garcia, January 1995 through June 1997. Data are collected every Monday, Wednesday, Friday, and Saturday. If the last day of a month is not a scheduled data-collection day, then the withdrawal is included in the withdrawal of the next month. Injection is plotted as negative. Figure B6. Monthly mean ground-water withdrawal and injection at wells AO-2 through AO-19 at Air Operations, Diego Garcia, January 1995 through June 1997. Data are collected every Monday, Wednesday, Friday, and Saturday. If the last day of a month is not a scheduled data-collection day, then the withdrawal is included in the withdrawal of the next month. Injection is plotted as negative--Continued. Figure B6. Monthly mean ground-water withdrawal and injection at wells AO-2 through AO-19 at Air Operations, Diego Garcia, January 1995 through June 1997. Data are collected every Monday, Wednesday, Friday, and Saturday. If the last day of a month is not a scheduled data-collection day, then the withdrawal is included in the withdrawal of the next month. Injection is plotted as negative--Continued. ## **SECTION C** Graphs of chloride concentration of pumped water, January 1995 through June 1997 Figure C1. Chloride concentration of pumped water (sampled at weekly intervals) at Module A and Modules C through L at Cantonment, Diego Garcia, January 1995 through June 1997. Figure C1. Chloride concentration of pumped water (sampled at weekly intervals) at Module A and Modules C through L at Cantonment, Diego Garcia, January 1995 through June 1997--Continued. Figure C2. Chloride concentration of pumped water (sampled at weekly intervals) at Horizontal wells H1 through H7 at Cantonment, Diego Garcia, January 1995 through June 1997. Figure C2. Chloride concentration of pumped water (sampled at weekly intervals) at Horizontal wells H1 through H7 at Cantonment, Diego Garcia, January 1995 through June 1997--Continued. Figure C3. Chloride concentration of pumped water (sampled at weekly intervals) at Quad wells Q1, Q2, Q4, and Q6 at Cantonment, Diego Garcia, January 1995 through June 1997. Figure C4. Chloride concentration of pumped water (sampled at weekly intervals) at wells AO-2 through AO-9 and wells AO-13 through AO-19 at Air Operations, Diego Garcia, January 1995 through June 1997. Water from well AO-13 has not been sampled since April 1993. Figure C4. Chloride concentration of pumped water (sampled at weekly intervals) at wells AO-2 through AO-9 and wells AO-13 through AO-19 at Air Operations, Diego Garcia, January 1995 through June 1997. Water from well AO-13 has not been sampled since April 1993--Continued. Figure C4. Chloride concentration of pumped water (sampled at weekly intervals) at wells AO-2 through AO-9 and wells AO-13 through AO-19 at Air Operations, Diego Garcia, January 1995 through June 1997. Water from well AO-13 has not been sampled since April 1993--Continued. ## REFERENCES CITED - Hunt, C.D., Jr., in press, Hydrogeology of Diego Garcia, chap. 32 of Vacher, H.L. and Quinn, T., eds., Geology and hydrogeology of carbonate islands: Amsterdam, The Netherlands, Elsevier Science Publishers. - Torikai, J.D., 1995, Status of ground-water resources at U.S. Navy Support Facility, Diego Garcia: Summary of hydrologic and climatic data through September 1993; U.S. Geological Survey Open-File Report 94-306, 51 p. - U.S. Department of Commerce, 1968, World weather records, 1951-60: Washington, D.C., U.S. Government Printing Office, 6 vols. - _____, 1979, World weather records, 1961-70: Washington, D.C., U.S. Government Printing Office, 6 vols. - _____, 1995, International station meteorological climate summary (ISMCS), ver. 3.0 [CD-ROM]: Asheville, N.C., National Oceanic and Atmospheric Administration. - U.S. Environmental Protection Agency, 1991, Secondary maximum contaminant levels (section 143.3 of part 143, National secondary drinking water regulations): U.S. Code of Federal Regulations, Title 40, Parts 100 to 149, revised through July 1, 1991. - U.S. Navy, 1978, Station climatic summary, January 1951-December 1977: Asheville, N.C., Naval Weather Service Detachment, 4 p.